Friday, February 10, 2023

"CQ CQ - Calling all dielectric welders!" (Or, those strange curvy things seen on a 10 meter waterfall)

 If one owns a receiver with a waterfall display, the increased cluttering of the 12 and 10 meter bands with weird "swooping" signals could not have gone unnoticed.  Take, for example, this recent snapshot of the lower portion of 10 meters from the waterfall of WebSDR #5 at the Northern Utah WebSDR (Link)

Figure 1:
10 Meters as seen on a beam antenna pointed toward Asia showing QRM from a large number of different sources - presumably dielectric heaters/welders/seamers.  These things radiate badly enough that they should have their own callsigns, right?
Click on the image for a larger version.


In looking at this spectral plot - which comes from an antenna oriented to the Northwest (toward Asia and the Pacific) one could be forgiven for presuming that someone had somehow connected a can of "Silly String" to their coax and was squirting noodles into the ionosphere!

What, specifically, are we looking at?

Across the entire spectrum plot one can see these "curved" signals, some of them - like that near the bottom, just above the cursor at 28374 kHz - are quite strong while there are many, many others that are much weaker, cluttering the background.  These signals contrast with normal SSB and CW signals - the former being seen clustered around 28500 and the latter around 28100 kHz - which are more or less straight lines as these represent transmissions with stable frequencies.

What are these from?  The general consensus is that these are from "ISM" (Industrial, Scientific and Medial) devices that nominally operate around 26957 kHz to 27283 kHz.  Clearly, the waterfall plot shows many devices outside this frequency range.

What sort of devices are these?  Typically they are used for RF heating - most often for dielectric sealers of plastic items such as bags, blister packs - but they could also be used in the manufacture of items that require some sort of energetic plasma (e.g. sputtering metal, etching) in any number of industrial processes.

Where are they coming from?

The simple answer is "everywhere" - but in terms of sheer number of devices, it's more likely that much of the clutter on these bands originates in Asia.  Consider the above spectral plot from an antenna located in Utah pointed at Asia - but then consider the plot below, taken at about the same time from an antenna that is pointed east, across the continental U.S. and Canada - WebSDR #4 at the Northern Utah WebSDR (link):

Figure 2:
10 Meters on a beam pointed toward the U.S.
Click on the image for a larger version.


To be absolutely fair, this was taken as the 10 meter band was starting to close across the U.S, but it shows the very dramatic difference between the two antenna's directionality, hinting at a geographical locus for many of these signals.

Further proof of the overseas origin of these signals can be seen in the following plot:

Figure 3:
Spectrum from AM demodulation of some of the signals of Figure 1 showing 50/100 Hz mains energy.
Click on the image for a larger version.

This plot was taken by setting the WebSDR to AM and setting for maximum bandwidth, tuning onto a frequency where several of these "swoops" seen in Figures 1 and 2 are recurring and then, using a virtual audio cable, feeding the result directly into the "Spectran" program (link).

As expected this plot shows a bit of energy at the mains harmonic frequencies of 120, 240 and 360 Hz owing to the fact that this antenna points into slightly-noisy power lines operating at the North American 60 Hz frequency - but on this plot you can also see energy at 50 and 100 Hz, indicative of a lightly-filtered power supply operating from 50 Hz power mains - something that is NOT present anywhere in North America.

Based on other reports (IARU "Intruder Watch", etc.) a lot of these devices seem to be located in Asia - namely China and surrounding countries where one is more likely to experience lax enforcement of spurious radiation of equipment that is manufactured/sold in those locales.

Why the "swoop", "curve" or "fishook" appearance seen in Figure 1?  If these devices were crystal controlled and confined to the nominal 26957 kHz to 27283 kHz ISM frequency range, we probably wouldn't see them in the 10 meter amateur band at all, but many of these devices - likely "built to cost" simply use free-running L/C oscillators that are accurate to within 10-15% or so:  As these oscillators - which are likely integral to the power amplifier itself (perhaps self-excited) - warm up, and as the industrial processes itself proceeds (e.g. plastic melts, material cures, glue dries) the loading on the RF output of this device will certainly change, and this results in an unstable frequency.

Why do they radiate?

Ideally, the RF would be contained to the working area and in the past, reputable manufacturers of such equipment would employ shielding of the equipment and filtering of power and control leads to confine the RF within.  But again, such equipment is often "built to cost" and such filtering and shielding - which is not necessary for the device to merely function is often omitted.

Can we find and fix these?

In this U.S. and parts of Europe such sources are occasionally tracked down and RF interference mitigated - either voluntarily or with "help" from the local regulator - but the simple fact is that the intermittent nature of these sources - and the fact that they radiate on frequencies that are prone to good propagation when the sun is favorable to such - makes them very difficult to localize.  If the signal source is coming from halfway around the world, there's likely nothing that you can do other than point your directional antenna the other way!

If it so-happens that you can hear such a signal at your location at all times of the day - regardless of propagation - you may be in luck:  There may be a device with a short distance (a few miles/km) of your location - and perhaps you can make a visit and help them solve the problem.

* * * * * * * 

Related article:


This page stolen from